Pre-Calculus CP 1 - Section 7.5 Notes **Graphing all types of Systems of Inequalities**

Name: KEY

Ex 1: Sketch the graph of $\sqrt{2}x^2 - 3$ You should know this one and be able to graph it using transformations!

Ex. 2: Sketch the graph of $x < y^2 + 1$ This is NOT a function – try graphing by plotting some points

Ex. 3: Sketch the graph of $x^2 + y^2 \le 16$ You should recognize this graph 7

Pre-Calculus CP 1 - Section 7.5 Notes **Graphing all types of Systems of Inequalities**

Now let's try doing MORE than one at once!

Ex. 4: Sketch the graph of the system- be sure to shade your final answer (feasible region) darker

$$(0,0) \Rightarrow 0 < 2(0) + 2 = 2$$

Ex. 5: Sketch the graph of the system- be sure to shade your final answer (feasible region) darker than the rest!

$$x^{2}>y-3 \longrightarrow y < \chi^{2}+3$$

$$3x-4y \le -12 \qquad 0 < +3 \quad (0,0) \quad \nu$$

Pre-Calculus CP 1 – Section 7.5 Notes Graphing all types of Systems of Inequalities

Let's try going the other way- WRITE the system of equations based on the graph below:

Y < X + 3 0 < 3 Y > -3 × -1 0>-1

Ex. 7:

$$(x-3)^2 + y^2 \le 9$$

 $(3,0) \to 0 < 9$

$$\frac{74 - 5x}{6} + 5$$

$$(0,0) \rightarrow 0 \le 5$$

Pre-Calculus CP 1 – Section 7.5 Notes Graphing all types of Systems of Inequalities

For the following, use the set of vertices given to graph the feasible region and derive a set of inequalities that would give you that region:

Ex. 8: A rectangle with vertices (-3,2), (-3,6), (3,6), (3,2)

Ex. 9: A triangle with vertices (-1,0), (2,0), (0,4)

Homework: p. 548 #2, 11, 43, 46, 57, 58, 59, 62, 63, 72